ISSN: 2971-6004

https://www.uniafricajournalofeducation.com

DIGITAL LITERACY AS CORE CURRICULUM IN NIGERIAN UNIVERSITIES: A CONCEPTUAL REVIEW

OLAIDE DAVID ADELEYE

Department of Business Education, Faculty of Arts and Education, University of Africa, Toru-Orua, Bayelsa State.
olaide.adeleye@uat.edu.ng
07062837953

KEMEBARADIKUMO NDIOMU

Department of Business Education, Faculty of Arts and Education, University of Africa, Toru-Orua, Bayelsa State. kelvinon2016@gmail.com 08035407960

and

EFEBO BATRAM

Department of Educational Management, Faculty of Arts and Education, University of Africa, Toru-Orua, Bayelsa State. ebatram@yahoo.com 08063790302

Abstract

Digital literacy is now a very important skill for graduates, but its consistent integration into Nigerian universities varies widely across curricula, infrastructure, and faculty expertise. This conceptual review synthesizes contemporary literature on digital, information, media, data, computational, and artificial intelligence literacy's and re-contextualizes the findings within the national higher education landscape. A phased integration model is advocated, whereby digital literacy is assigned credit-bearing status throughout all degree programmes. Phase 1 establishes foundational competence alongside an ethical framework; Phase 2 integrates disciplinary applications; Phase 3 advances professional project work, teamwork, and varied data competencies; and Phase 4 anchors cumulative learning in capstones, field placements, and publicly accessible digital portfolios. The review includes a staged curriculum blueprint with level-specific learning descriptors, authentic assessment designs, and digital portfolio specifications. Enabling infrastructures and the establishment of sustained industry partnerships are itemized, together with a faculty training progression from basic awareness to peer mentoring. Governance mechanisms are delineated through institutional Senate endorsement pathways, established qualitative and quantitative review procedures, and alignment with national policies on data stewardship and intellectual property. Success will be monitored through initial capability baselines, annual institutional surveys, portfolio examinations, and independent moderation, all supported by a risk framework that identifies access inequalities, annual faculty demands, and procurement issues. The result is a comprehensive framework that integrates policy, curricular design, and assessment procedures with directly observable graduate competencies and can be calibrated to universities of different sizes and resource configurations across Nigeria.

Keywords: Digital Literacy, Nigerian Universities, Curriculum Reform, Quality Assurance, Policy Alignment

Introduction

Nigerian universities are dedicated to preparing graduates for academic, professional, and civic engagement in a data-driven society, making digital literacy very important for graduation (OECD, 2019; World Bank, 2021). Although institutions acknowledge this fact, the integration of digital

ISSN: 2971-6004

https://www.uniafricajournalofeducation.com

competencies into non-technical programs remains haphazard. To remedy this shortcoming, guidelines by the National Universities Commission (NUC, 2023a, 2023b) prescribe curricular reengineering and ongoing pedagogical support. This review recasts the mandate as a practical, nation-wide agenda and grounds it in Nigerian experience, drawing from pilots in general education courses, faculty upskilling clinics, and refreshment programmes that report measurable improvements in engagement and assessment reliability. Empirical findings from Ahmadu Bello University confirms that higher digital-literacy proficiency strengthens autonomous learning practices (Sulaiman & Mafindi, 2025), while another empirical investigation at the Federal University of Petroleum Resources and Nigeria Maritime University reveal uneven staff capacity across digital domains, underscoring the need for tiered standards (Emiri, 2025). Similarly, surveys at the University of Ilorin during the COVID-19 pandemic show variable acceptance and use of Moodle, reinforcing the value of guided instruction and digital rubrics that outlines assessment criteria (Babalola et al., 2022), and multi-institutional studies link Google Classroom activity and analytics-driven feedback to better engagement and performance (Abanyam, 2023).

The framework synthesizes internationally validated capability models, adapting them to Nigerian operational and pedagogical contexts. It sets tiered expectations for learners and staff, calibrated assessments, and explicit indicators for evaluability digital rubrics, e-portfolios, participation analytics, graduate employability, capstone ratings, internet service availability, and compliance with data governance protocols (ACRL, 2015; ISTE, 2016, 2017; UNESCO, 2018). Mechanisms are tied to existing legislative and financing architectures to ensure alignment with regulatory protocols (FMCIDE, 2020; NUC, 2015, 2023a, 2023b; TETFund, 2022). Comparative African experience, including rollouts in Southern and East Africa, is employed to benchmark pace and quality assurance. Targeted at undergraduate curricula across all disciplines, the framework harmonizes with national directives on curriculum design, broadband, and data custodianship (ACRL, 2015; ISTE, 2016, 2017; NUC, 2015; OECD, 2019; Federal Republic of Nigeria, 2023). Highly specialized computing or advanced research programmes are deliberately limited unless they offer transferable pedagogical value.

The proposed framework rests upon three foundational premises: first, that digital literacy constitutes a core competency, integrated throughout the curriculum via precisely defined, measurable outcomes (ACRL, 2015; Jisc, n.d.; Vuorikari et al., 2022); second, that a contextually sequenced, iterative model for curriculum development and staff professional learning is likely to elevate learner achievement (ISTE, 2016, 2017); and third, that Nigerian universities can draw upon pre-existing national and institutional frameworks to effect these transformations, provided that the implementation prioritises budgetary discipline, suitably calibrated human resources, and transparent, quantifiable performance criteria (FMCIDE, 2020; NUC, 2015, 2023a, 2023b; TETFund, 2022). The inquiry thereby foregrounds the adequacy of the leading international digital literacy frameworks-exemplified by the documentation referenced to manifest within the specific operational, legislative, and fiscal parameters governing Nigerian higher education and to withstand the prevailing auditing and funding cyclical exigencies (ACRL, 2015; ISTE, 2016, 2017; Jisc, n.d.; UNESCO, 2018; Vuorikari et al., 2022; FMCIDE, 2020; NUC, 2015, 2023a, 2023b).

Digital Literacy Framework for Higher Education

Digital literacy is defined as the capacity to assess the veracity and relevance of digital information, to deploy and skillfully interact with digital technology proficiently in a given discipline, to participate in virtual academic and professional exchanges consistent with prevailing ethical norms, and to diagnose and resolve discipline-specific challenges through digital means. This operational capability draws explicitly from an array of established frameworks: Jisc's Digital Capability Framework, the European Commission's Digital Competence Framework for Citizens (DigComp), its parallel framework for educators (DigCompEdu), and the Association of College and Research Libraries (ACRL) Framework for Information Literacy (ACRL, 2016; European Commission, 2022; Jisc, 2019; Redecker, 2017). Complementary guidance is provided by UNESCO's stipulated need for equitable, lifelong engagement with digital literacy (UNESCO, 2021).

ISSN: 2971-6004

https://www.uniafricajournalofeducation.com

Among the identified instruments, each possesses a tailored remit: Jisc proffers an overarching scaffold for instructional design and institutional demand, DigComp prescribes gradated attainment descriptors for learners, DigCompEdu enumerates essential digital responsibilities for instructional staff, and ACRL enumerates critical competencies essential to the research process (ACRL, 2016; European Commission, 2022; Jisc, 2019; Redecker, 2017). Once programme outcomes are aligned, the consensus converges upon five cardinal domains of instructional emphasis: the curation, critical evaluation, and judicious application of information; purposeful engagement within digital collaborative networks; Making and evaluating digital products; the practiced assertion of safety and the observance of ethical, privacy, and intellectual property standards; and the Clear explanation of problem-solving methods that foster lifelong, reflective inquiry (European Commission, 2022; Jisc, 2019; Redecker, 2017; UNESCO, 2021).

Table 1: Mapping of Domains to Frameworks and Programme Outcomes

•	Shared domain	•	Jisc element	•	DigComp domain	•	DigCompE du area	•	ACRL frame	•	Program me outcome
•	Information and data literacy	•	Information and data literacy	•	Information and data literacy	•	Facilitating learners' digital competence	•	Authority; searching; creation	•	PLO1
•	Communicati on and collaboration	•	Digital communicati on and collaboration	•	Communicati on and collaboration	•	Teaching and learning; assessment	•	Information as conversatio n	•	PLO2
•	Digital creation and analytics	•	Digital creation; problem solving and innovation	•	Digital content creation	•	Digital resources	•	Information creation processes	•	PLO3
•	Safety, ethics, privacy, IP	•	Digital identity and wellbeing	•	Safety	•	Empowerin g learners; professional engagement	•	Ethical use and attribution	•	PLO4
•	Problem solving and lifelong learning	•	Digital learning and development	•	Problem solving	•	Professiona l engagement ; assessment	•	Research as inquiry; metacogniti on	•	PLO5

Adapted from Jisc Digital Capability Framework, DigComp 2.1, DigCompEdu, and the ACRL Framework for Information Literacy

Progression Logic, Staff Capability, and Inclusivity in Digital Literacy

Undergraduate digital literacy programme is described as follows: at the 100 level, Information Literacy and Collaborative Digital Skills; at the 200 level, Academic Writing, Citation Management, and Data Visualization; at the 300 level, Digital Project Management, Workflow Design, and Ethics in Digital Environments and by the 400 level Data Integration, Automation, and Digital Presentation Skills (ACRL, 2016; European Commission, 2022; Jisc, 2019). These descriptors resonate with the DigComp framework's focus on digital competence but deviate from Jisc's broader competency framework, which integrates digital skills within a pedagogical context, requiring adaptation to local needs and technology adoption. Educators' mandatory continuing professional development is sacrosant to student success, focusing on task design, collaboration, and equitable assessment.

The DigCompEdu framework stages staff development from foundational to leadership levels, addressing learning material design, pedagogy, and assessment (Redecker, 2017). In contrast, frameworks like ACRL and Jisc offer targeted guidance for managing digital resources and fostering literacy in higher education, complementing DigCompEdu's holistic approach. These frameworks differs in their application, requiring adaptation based on institutional and regional contexts. Equity, ethics, and inclusion are guided by UNESCO's accessibility audits and privacy standards, ensuring

ISSN: 2971-6004

https://www.uniafricajournalofeducation.com

inclusivity globally, while ACRL focuses on culturally responsive sourcing and citation practices, emphasizing local academic practices (ACRL, 2016; UNESCO, 2021). This dual approach balances global and local needs. Programme assurance is ensured through e-portfolios, applied projects with technical appendices, and simulations or field practicums with feedback and reflection.

Nigerian University Education: Status and Gaps in Digital Literacy

With regards to Nigerian university education, its Core Curriculum and Minimum Academic Standards (CCMAS) expect digital literacy to be considered only when the outcomes, credit allocation, and assessments are specified (NUC, 2023a, 2023b). While the Open and Distance Learning (ODL) policy mentions blended learning and assessment, the extent to which it has been applied outside of the fields of technology is limited. This limitation is a direct result of systemic issues; for example, bureaucratic resistance to curriculum change; agitated, unprepared academic staff who are yet to be fully equipped to facilitate digital environments; and a curriculum focus on theory rather than applied digital practices in professional situations. While it can be seen that certain graduates have learned how to use basic tools, they have not been able to apply these practices to their own specific field (Adeyemi & Oyekunle, 2022; Afolabi & Olorunfemi, 2021; Obi, 2023).

Infrastructure problems such as irregular internet connection and power supply are barriers to uninterrupted computer-based testing (FMCIDE, 2020a, 2020b; NgREN,n.d.-a, n.d.-b;TETFund, 2023). Addressing these challenges will not be through technical fixes alone, but by larger reforms in faculty development and institutional governance. In a related development, many of the lecturers are not well trained in digital pedagogy and online assessment (Adeyemi & Oyekunle, 2022; Afolabi & Olorunfemi, 2021). Nigerian universities are behind the global standard in terms of integration of digital literacy, despite quality assurance mechanisms. International standards, including recommendations from UNESCO, DigCompEdu and Jisc provide the benchmarks for this alignment but reformation of system beyond infrastructure is key (Federal Republic of Nigeria, 2023; National Universities Commission - NUC, 2015).

Advancing the implementation of policies, such as CCMAS and ODL, require concerted effort and the institution's support and commitment as the very nature of these policies will require strong support structures which may be predominantly engaged by faculty as part of their professional development and the broader commitment of government and educational systems (FMCIDE, 2020a, 2020b; NUC, 2015, 2023a, 2023b; TETFund 2020, 2023; Federal Republic of Nigeria, 2023; NgREN, n.d.-a, n.d.-b).

Why Nigerian Universities Curricula Must Change

Employer surveys at the global level highlight that there is growing importance placed on data usage, digital communication, and technology-driven problem-solving approaches (World Economic Forum, 2023; OECD, 2023, 2022). In Nigeria, the emergence of electronic financial technologies, point-of-sale systems (POS), and USSD platforms, indicates shifting demands from the labour market and entry-level job specifications (Central Bank of Nigeria, 2023). The introduction of blended learning, collaborative sharing of knowledge, and authentic assessments, are indicative of changing labour market demands. The demands set by these changes require undergraduate-level skills, such as been able to undertake simple survey research, critical analysis, and working in teams (Jisc, 2021; UNESCO, 2015). Research practice now prioritizes greater emphasis on transparency and managing data, which are undergraduate level skills (UNESCO, 2021). These shifts suggest that curricula must be situated within the thought process brought about by the continually evolving labour market demands. Those demands must also be reflected in outcomes that are situated within tasks that can be assessed (OECD, 2023; World Economic Forum, 2023).

The CCMAS framework of the NUC presents supporting documentation for the inclusion of digital literacy into coursework, however, further aspects of real grassroots innovation by faculty and supportive institutional systems is very much required. Faculty working in many Nigerian universities are implementing innovative approaches to their teaching strategies under difficult financial and staffing

ISSN: 2971-6004

https://www.uniafricajournalofeducation.com

situations. As much institutional support as they can receive by way of professional development and collaboration would be required to support these innovative approaches and scale them wider if they occur. Through the combination of policy approval with faculty-driven initiatives, a holistic approach to curriculum reform emerges, better aligning with the needs of Nigeria's workforce and global trends.

A Staged Integration framework for Nigerian Universities

This paper proposes a framework pertaining to Staged Integration which attempts to incorporate elements of digital literacy to fit into a curriculum, scope, and assessment design within a Nigerian University context. The framework aligns the tasks to Jisc, DigComp, ACRL and UNESCO models to preserve structural consistency from design to quality assurance (Jisc, 2019; European Commission, 2022; Redecker, 2017; ACRL, 2016). These models are prominent, however, their contextual application is a dire challenge in the prevalent infrastructure and educational conditions of the Nigerian context. The Jisc framework focused on digital literacy is needs modification to overcome contextual barriers. DigComp's focus on digital competence also needs reframing to the Nigerian context. The ACRL framework promotes research practices that foster the engagement of critical thinking and data in a digitally inclined economy. Implementing these frameworks to the pertinent Nigerian context, marked by the disparity of institutional resources, faculty preparedness, and the degree of technological advancement, is indeed challenging. As outlined in the CCMAS, the Staged Integration framework in comparison to local practices can integrate digital literacy across multiple domains without undue burden on the extant systems (NUC, 2015, 2023a, 2023b). The innovative practices at the grassroots level coupled with policy alignment provide the integrated, sustainable, and scalable integration of digital literacy in line with both institutional capacities and global trends.

Curriculum Map by Level

The curriculum includes five key learning outcomes (PLOs): Information and Data Literacy, Digital Communication and Collaboration, Digital Content Creation, Safety and Ethics, and Problem Solving (ACRL, 2016; European Commission, 2022; Jisc, 2019; Redecker, 2017). At each level, courses are progressively more complex:

- DGL 101 (100 level): Focuses on digital awareness, source assessment, spreadsheet/data analysis, (ACRL, 2016; Jisc, 2019).
- DGL 201 (200 level): Students work on collaborative repositories, visualizations, and accessibility reviews (European Commission, 2022; Jisc, 2019).
- DGL 301 (300 level): Involves cyber-security, an applied project with a workflow, stakeholder brief, ethics register, and oral examination (ACRL, 2016; Redecker, 2017).
- DGL 401 (400 level): Students create a capstone project in advanced digital contents creation
 and also produce a technical report, and e-portfolio (UNESCO, 2021; Jisc, 2021). And at each
 stage competencies will be measured through both formative and summative assessment as
 appropriate.

Discipline Exemplars

In the Faculty of Education curriculum, digital competencies are progressively introduced across the levels. Learning Management Systems (LMS) modules are covered in the Educational Technology with the 100 level students. They are taught on the features comprising the user interface and how to integrate with the educational systems with an emphasis on the educational use of the system (ACRL, 2016). The 200 level students assist instructors in designing lesson packs and are required to create lesson content that complies with the Web Content Accessibility Guidelines (WCAG 2.1) and other best practices (NUC, 2015). The 300 level students work on digital classroom assessment studies to grade students using online quizzes and e-portfolios and analyze the learning outcomes (UNESCO, 2015). The 400 level students work on the school-improvement capstone project where they apply all the digital skills learned to formulate and implement educational digital solutions to enhance the school practices and infrastructure (Federal Republic of Nigeria, 2023; ITF, n.d.).

Assessment and Portfolios

Assessment depends on e-portfolios directly linked to learning outcomes, applied projects that are reproducible, and practicums with feedback. All courses involving personal student data follow consent,

ISSN: 2971-6004

https://www.uniafricajournalofeducation.com

security, and accessibility requirements (Jisc, 2021; ACRL, 2016; UNESCO, 2021; Redecker, 2017; NUC, 2015).

Enablers: Staff Development and Institutional Alignment

The Staff Development Ladder derives its architecture from the DigCompEdu framework and the Jisc professional development programme, both of which furnish comprehensive protocols for cultivating digital proficiency in the domains of higher education. DigCompEdu delineates core competencies across six domains, including teaching and learning, digital resources, and assessment, thereby charting a pathway from introductory digital competencies to sophisticated pedagogical mastery. For instance, the foundational 100 level identifies elemental competencies, such as effective navigation of Learning Management Systems (LMS), whereas the 200 level engages participants in experiential modules epitomized by online pedagogy workshops that deepen and broaden the core skillset. Supplementing this delineation, the Jisc initiative incorporates peer-mentoring and modular micro-credentials, which are designed to systematically reinforce pedagogical practice through reflective and evidence-based learning at scale. All programme components are framed within the requirements of NUC accreditation. Learning Needs Mapping (LNM) and taxonomy alignment features guarantee transparency and comparability across participating institutions. Further safeguards feature such as peer-review protocols and adaptive learning assessments, whose effectiveness is assured through scheduled audits to ensure continuous improvement (NUC, 2023a; European Association for Quality Assurance in Higher Education, 2023; International Network for Quality Assurance Agencies in Higher Education, 2023). In concert with these procedures, accreditation reviews routinely demand the provision of moderated eportfolios, synthesis reports, and feedback from external examiners (NUC, 2015; NUC, 2023a).

Data Governance, Connectivity, and Institutional Support

Effective governance within Nigerian higher education must embed the core precepts of the Nigeria Data Protection Act (NDPA) in both policy and practice such that institutional data captured via course management systems, stored in cloud applications, or disseminated through publicly released teaching materials remains strictly governed by principles of data minimization, retention schedules, and explicit consent (Federal Republic of Nigeria, 2023). The Nigerian Research and Education Network (NgREN) underpins this compliance through robust connectivity that conforms to both the National Broadband Infrastructure Roadmap and the National Digital Economy Policy, offering a secure, high-capacity backbone that facilitates regular, secure, and efficient access to digital resources in academic environments (FMCIDE, 2020a, 2020b).

The financing of this technical and institutional transformation is underpinned by the Tertiary Education Trust Fund (TETFund), which allocates resources to the development of digital infrastructures such as state-of-the-art laboratories, collaborative virtual platforms, and comprehensive staff capacity building thereby enabling comprehensive, digital initiatives. Such investment is aligned with the objectives of the Digital Competence Framework for Educators (DigCompEdu), which charts a pathway for ongoing professional development through an inter-institutionally validated micro-credentials framework. By embedding the DigCompEdu framework within staff training programmes, universities guarantee that their human and digital enabling capital is continuously upgraded, cultivating a digitally competent workforce that is pedagogically and administratively competent in emerging technologies.

Oversight of this integrative trajectory is delegated to a Senate Committee on Digital Literacy, which ensures that all digital programmes whether externally funded by TETFund or administered by individual faculties are NDPA compliant, benefit systematically from NgREN connectivity, and advance the digital pro competence learning objectives enshrined within the DigCompEdu framework. Regular reports issued by this oversight committee shall furnish systematic tracking of advancement and orchestrate the rectification of persisting digital literacy deficiencies (TETFund, 2020, 2023; NUC, 2023a).

Implementation Indicators and Risks

Universities should monitor a clear set of metrics that connect teaching practices with graduate outcomes and compliance requirements. These metrics should be harmonised with pre-existing reference frameworks, such as Jisc's focus on measurable dimensions digital capability, the NUC's

https://www.uniafricajournalofeducation.com

accreditation standards, and the OECD's ensuring skills match what employers want. The frameworks cover key areas including digital capability, blended instructional delivery, information governance, and network performance, ensuring that teaching practices are effectively linked to the digital literacy needs required by today's job market (Jisc, 2019, 2021; NUC, 2015, 2023a; FMCIDE, 2020a, 2020b; Federal Republic of Nigeria, 2023; NgREN, n.d.-a; OECD, 2023; World Economic Forum, 2023; UNESCO, 2015, 2021).

Table: 2 Indicator set

Tab	ne: 2 maicator sei			
•	Indicator	• Definition	• Target by end of Year 2	• Source
•	Portfolio completion rate	• Share of students submitting a compliant e-portfolio	• ≥85%	• LMS; Centre for Digital Scholarship (Jisc, 2021)
•	Portfolio quality index	Mean rubric score across five criteria	• ≥ 3.0/4.0	 Assessment records; Programme Boards (Jisc, 2019; NUC, 2023a)
•	Staff certification coverage	 Academic staff with DigCompEdu-aligned micro-credentials 	• ≥ 60%	• HR; Staff Development (Redecker, 2017)
•	Laboratory utilization	• Weekly student hours per digital lab	• \geq 35 hours	• Lab booking; ICT
•	Teaching-space coverage	• Timetabled spaces with reliable Wi-Fi and power	• ≥90%	• ICT; Facilities (FMCIDE, 2020b; NgREN, n.da)
•	Bandwidth per student	• Contracted upstream bandwidth per headcount	Upward trend	• ICT reports (FMCIDE, 2020b)
•	Course delivery compliance	 DGL courses using approved rubrics and moderation 	• 100%	• QA Unit; Faculties (NUC, 2015, 2023a)
•	SIWES alignment	 Partner projects mapped to DGL 301/401 outcomes 	• ≥ 40%	• SIWES Office (ITF, n.d.)
•	External examiner endorsement	• Programmes with positive comments on digital artefacts	• ≥80%	• Examiner reports (NUC, 2023a)
•	Accessibility compliance	 Artefacts passing captioning, alt text, readability checks 	• ≥90%	• Course audits; Library (UNESCO, 2015)
•	Data-protection incidents	Reportable incidents and time to closure	• 0; close ≤ 30 days	 Data Protection Office (Federal Republic of Nigeria, 2023)
•	Graduate digital tasks at work	 Tracer respondents reporting frequent digital tasks 	• ≥ 70%	• Career Services (OECD, 2023; WEF, 2023)
•	Employer satisfaction	 Mean employer rating of graduate digital competence 	• ≥ 3.5/5	• Employer survey (WEF, 2023)
•	Cost adherence	Actual spend versus approved budget	• Within ±10%	Bursary; Procurement

ISSN: 2971-6004

https://www.uniafricajournalofeducation.com

Table: 3 Risk register and controls

	8							
•	Risk	Primary control	•	Secondary control	•	Owner		
•	Connectivity shortfalls	• Contract to Broadband Plan service levels; use NgREN	•	Staggered submissions; lab caches (FMCIDE, 2020b; NgREN, n.da)	•	ICT		
•	Power unreliability	 Stabilised power and backup for labs and network rooms 	•	Flexible assessment windows; recovery drills	•	Facilities; ICT		
•	Procurement delays	 Early TETFund applications; framework agreements 	•	Open-source alternatives; phased deployment (TETFund, 2020, 2023)	•	Bursary; Procurement		
•	Staff uptake lag	 Workload-backed micro-credentials tied to appraisal 	•	Team-teaching with learning technologists (Redecker, 2017; NUC, 2015)	•	Deans; HR		
•	Assessment integrity	 Common rubric families; calibration sessions 	•	External sampling of artefacts (NUC, 2023a)	•	QA Unit		
•	Data-protection breach	NDPA compliance pack	•	Security awareness and audit trails (Federal Republic of Nigeria, 2023)	•	DPO		
•	Inclusion gap	 Device-loan schemes; accessible design checklists 	•	Assistive technologies; librarian co-teaching (UNESCO, 2015)	•	Student Affairs; Library		
•	Platform lock-in	 Open standards; portfolio portability policy 	•	Export to institutional repository (Jisc, 2021)	•	Centre for Digital Scholarship		
•	Funding volatility	 Multi-year budget with co-funding 	•	Re-prioritise labs and staff training (TETFund, 2023)	•	Management; Bursary		
•	Labour-market misalignment	 Advisory boards; SIWES briefs reviewed per semester 	•	Employer and graduate survey loop (ITF, n.d.; WEF, 2023)	•	Faculties; SIWES		
Universities should monitor key indicators and manage risks carefully, At the Senate and Council levels.								

Universities should monitor key indicators and manage risks carefully, At the Senate and Council levels. They also need to record their recommendations regarding any issue and always make sure that everything correspond with national standards, such as Outcomes-Driven Learning (ODL), broadband goals, CCMAS and the Nigerian Digital Promotion Act (NDPA). This will ensure that university processes aligns with national policies (NUC, 2015; FMCIDE, 2020a, 2020b; Federal Republic of Nigeria, 2023).

Conclusion

Digital literacy is an indispensable aspect of Nigerian university education. This paper presents a clear, step-by-step model for teaching, assessing, and monitoring digital literacy in Nigerian universities. It includes detailed goals for each year of study, rubrics for portfolios and projects, and a staff development plan that connects to national and international standards. The implementation of this model follows regulations for curriculum approval, blended learning, internet connectivity, funding, and data protection. The framework proposed in this paper is practical and doable. In the first two years, core courses build basic digital skills, and in the last two years, students apply these skills to real-world tasks using actual data and public projects. Faculty development is supported through micro-credentials, and technology platforms are aligned with national infrastructure and funding programs. Quality is maintained through shared rubrics, external reviews, and yearly reports on learning outcomes and regulatory compliance.

The process emphasizes fairness and integrity, with accessible resources, assistive technologies, and strong privacy protections. Hence, the framework commences with hands on staff training, departmental collaboration, standardized rubrics, and the completion of final practical projects.

ISSN: 2971-6004

https://www.uniafricajournalofeducation.com

Ongoing reviews of resources, student progress and achievement, and alumni outcomes, will ensure continuous improvement. With strong governance and regulatory backing, universities can move towards a system that is transparent, accountable, and prepares graduates to think critically, collaborate effectively, create digital content, and follow ethical guidelines in this era of technological advancement.

References

- Abanyam, F. E. (2023). Artificial intelligence: Interactive effect of Google Classroom and learning analytics on academic engagement of business education students in universities in Nigeria. *Library Philosophy and Practice*, 2, 1–17. https://digitalcommons.unl.edu/libphilprac/
- Adeyemi, M. A., & Oyekunle, O. O. (2022). Teacher training in digital pedagogy: Challenges and opportunities in Nigerian higher education. *Journal of Educational Technology & Practice*, 22(2), 93–107.
- Afolabi, T., & Olorunfemi, A. (2021). Digital literacy and the future of education in Nigeria: Challenges and opportunities. *Journal of Global Education and Technology*, 7(1), 45–61.
- Association of College and Research Libraries (ACRL). (2015). Framework for information literacy for higher education. ACRL. http://www.ala.org/acrl/standards/ilframework
- Association of College and Research Libraries. (2016). *Framework for information literacy for higher education*. https://www.ala.org/acrl/standards/ilframework
- Babalola, E. O., Agbede, C. O., & Olanrewaju, I. P. (2022). Undergraduates' level of acceptance and utilization of Moodle platform for learning during COVID-19 pandemic at the University of Ilorin. *Indonesian Journal of Multidisciplinary Research*, 2(2), 307–318. https://doi.org/10.17509/ijomr.v2i2.45194
- Central Bank of Nigeria. (2023). *Industry data by e-payment channels and others for January to December 2023*. https://www.cbn.gov.ng/PaymentsSystem/ePaymentStatistics.html (Central Bank of Nigeria)
- Emiri, O. T. (2025). Digital literacy among lecturers in the age of artificial intelligence: A case study of two Nigerian specialised universities. *Delta Journal of Computing, Communications & Media Technologies*, *1*(1), 76–90.
- European Commission, Joint Research Centre. (2022). *The digital competence framework for citizens* 2.2 (*DigComp* 2.2): *Updated examples of use*. Publications Office of the European Union. https://doi.org/10.2760/115376
- Federal Ministry of Communications and Digital Economy (FMCIDE). (2020). *National digital economy policy and strategy* (2020–2030). Abuja: Government of Nigeria.
- Federal Ministry of Communications and Digital Economy. (2020). *Nigerian national broadband plan 2020–2025*. https://ncc.gov.ng/media-center/public-notices/new-nigerian-national-broadband-plan-2020-2025
- Federal Ministry of Communications and Digital Economy. (2020a). *National digital economy policy and strategy* (2020–2030). https://nitda.gov.ng/wp-content/uploads/2020/06/National-Digital-Economy-Policy-and-Strategy.pdf
- Federal Ministry of Communications and Digital Economy. (2020b). *Nigerian national broadband plan 2020–2025*. https://ncc.gov.ng/media-center/public-notices/new-nigerian-national-broadband-plan-2020-2025
- Federal Republic of Nigeria. (2023). *Nigeria data protection act*, 2023. https://placng.org/i/wp-content/uploads/2023/06/Nigeria-Data-Protection-Act-2023.pdf
- FMCIDE. (2020a). *National digital economy policy and strategy* (2020–2030). https://nitda.gov.ng/wp-content/uploads/2020/06/National-Digital-Economy-Policy-and-Strategy.pdf
- FMCIDE. (2020b). *Nigerian national broadband plan 2020–2025*. https://ncc.gov.ng/media-center/public-notices/new-nigerian-national-broadband-plan-2020-2025
- Industrial Training Fund. (n.d.). *Students' industrial work experience scheme (SIWES): Guidelines*. https://itf.gov.ng/pdf/SIWES%20Work.pdf
- International Society for Technology in Education (ISTE). (2016). *ISTE standards for students*. ISTE. https://www.iste.org/standards/for-students

ISSN: 2971-6004

- International Society for Technology in Education. (2017). *ISTE standards for educators*. https://www.umf.maine.edu/fieldservices/wp-content/uploads/sites/59/2020/11/ISTE-Standards-for-Educators-2017.pdf
- Jisc. (2019). Building digital capability: The six elements of digital capability. https://www.jisc.ac.uk/rd/projects/building-digital-capability
- Jisc. (2021, August 16). *Getting started with e-portfolios*. https://www.jisc.ac.uk/guides/getting-started-with-e-portfolios
- Jisc. (n.d.). *Individual digital capabilities: Our digital capabilities framework*. https://digitalcapability.jisc.ac.uk/what-is-digital-capability/individual-digital-capabilities/
- National Universities Commission (NUC). (2015). Benchmark minimum academic standards for undergraduate programmes in Nigerian universities. Abuja: NUC.
- National Universities Commission (NUC). (2023a). Core curriculum minimum academic standards (CCMAS) for Nigerian universities, Volume I. Abuja: NUC.
- National Universities Commission (NUC). (2023b). Core curriculum minimum academic standards (CCMAS) for Nigerian universities, Volume II. Abuja: NUC.
- National Universities Commission. (2015). *Guidelines for open and distance learning in Nigerian universities*. https://nuc.edu.ng/wp-content/uploads/2015/01/GUIDELINES-FOR-OPEN-AND-DISTANCE-LEARNING-IN-NIGERIAN-UNIVERSITIES.pdf
- National Universities Commission. (2023a). *Core Curriculum and Minimum Academic Standards* (*CCMAS*): *Education*. https://nuc-ccmas.ng/download/ccmas-education/
- National Universities Commission. (2023a, August 31). *FG insists CCMAS implementation to begin September* 2023. https://www.nuc.edu.ng/fg-insists-ccmas-implementation-to-begin-september-2023/
- National Universities Commission. (2023b). *Core Curriculum and Minimum Academic Standards* (CCMAS) portal. https://nuc-ccmas.ng/
- National Universities Commission. (2023b, August 31). *FG insists CCMAS implementation to begin September* 2023. https://www.nuc.edu.ng/fg-insists-ccmas-implementation-to-begin-september-2023/
- Nigerian Research and Education Network. (n.d.). *NgREN at a glance*. https://ngren.edu.ng/ngren-at-a-glance
- Obi, O. (2023). Re-thinking higher education in Nigeria: Integrating digital literacy into curricula. *Journal of Educational Innovations*, 9(1), 35–46.
- OECD. (2022). *Skills for the digital transition*. OECD Publishing. https://www.oecd.org/en/publications/skills-for-the-digital-transition_38c36777-en.html (OECD)
- OECD. (2023). *OECD skills outlook 2023: Skills for a resilient green and digital transition*. OECD Publishing. https://doi.org/10.1787/27452f29-en
- Organisation for Economic Co-operation and Development (OECD) (2019). *OECD skills outlook 2019: Thriving in a digital world.* https://www.oecd.org/en/publications/2019/05/oecd-skills-outlook-2019_c8896fe0.html
- Redecker, C. (2017). European framework for the digital competence of educators: DigCompEdu. Publications Office of the European Union. https://doi.org/10.2760/159770
- Sulaiman, B., & Mafindi, F. S. (2025). Assessment of digital literacy skills on autonomous learning practices among undergraduate students of Ahmadu Bello University, Zaria, Kaduna State. *Zamfara International Journal of Education*, 2(2), 1–12. https://doi.org/10.64348/zije.202522
- Tertiary Education Trust Fund (TETFund). (2022). *TETFund strategic plan 2022–2026*. Abuja: TETFund.
- Tertiary Education Trust Fund. (2020). *Guidelines for accessing the ICT support intervention*. https://tetfund.gov.ng/wp-content/uploads/2020/06/ict_guideline.pdf
- Tertiary Education Trust Fund. (2022). *Guidelines for accessing TETFund intervention funds* (2nd ed.). https://tetfund.gov.ng/wp-content/uploads/2022/03/Guidelines_New-PDF.pdf
- Tertiary Education Trust Fund. (2023). *Intervention guidelines (2023 ed.)*. https://tetfund.gov.ng/index.php/intervention-guidelines/
- UNESCO. (2015). Blended learning for quality higher education: A framework and self-assessment tool. https://unesdoc.unesco.org/ark:/48223/pf0000246851

ISSN: 2971-6004

https://www.uniafricajournalofeducation.com

- UNESCO. (2018). *ICT competency framework for teachers* (Version 3). https://unesdoc.unesco.org/ark:/48223/pf0000265721
- UNESCO. (2021). *Digital literacy in education: Global frameworks and policy guidance*. UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000379371UNESCO. (2021). *UNESCO recommendation on open science*. https://unesdoc.unesco.org/ark:/48223/pf0000379949
- United Nations Educational, Scientific and Cultural Organization (UNESCO). (2018). *Digital literacy global framework*. Paris: UNESCO.
- Vuorikari, R., Kluzer, S., & Punie, Y. (2022). *DigComp 2.2: The digital competence framework for citizens With new examples of knowledge, skills and attitudes*. Publications Office of the European Union. https://doi.org/10.2760/115376
- World Bank. (2021). Digital skills: An engine for inclusive growth. Washington, DC: World Bank.
- World Bank. (2021). World development report 2021: Data for better lives. https://wdr2021.worldbank.org/ World Economic Forum. (2023). The future of jobs report 2023. https://www3.weforum.org/docs/WEF_Future_of_Jobs_2023.pdf